

1 Mixing layer height on the North China Plain and meteorological 2 evidence of serious air pollution in southern Hebei

3 Xiaowan Zhu^{1,3}, Guiqian Tang^{1,2*}, Jianping Guo⁴, Bo Hu¹, Tao Song¹, Lili Wang¹,
4 Jinyuan Xin¹, Wenkang Gao¹, Christoph Münkel⁵, Klaus Schäfer⁶, Xin Li^{1,7}, and
5 Yuesi Wang¹

6

7 ¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric
8 Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences,
9 Beijing 100029, China

10 ²Center for Excellence in Regional Atmospheric Environment, Institute of Urban
11 Environment, Chinese Academy of Sciences, Xiamen 361021, China

12 ³University of Chinese Academy of Sciences, Beijing 10049, China

13 ⁴State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric
14 Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081,
15 China

16 ⁵Vaisala GmbH, 22607 Hamburg, Germany

17 ⁶Atmospheric Science College, Chengdu University of Information Technology
18 (CUIT), Chengdu 610225, China

19 ⁷Beijing Municipal Committee of China Association for Promoting Democracy,
20 Beijing 100035, China

21

22 *Correspondence to:* G. Tang (tqq@dq.cern.ac.cn)

23

24 **Abstract**

25 To investigate the spatiotemporal variability of regional mixing layer height (MLH)
26 on the North China Plain (NCP), multi-site and long-term observations of MLH with
27 centimeters at three inland stations [e.g., Beijing (BJ), Shijiazhuang (SJZ), Tianjin
28 (TJ)] and one coastal site [e.g., Qinhuangdao (QHD)] were conducted from 16
29 October 2013 to 15 July 2015. The MLH at the inland stations on the NCP were
30 highest in summer and lowest in winter, while the MLH in the coastal area of Bohai
31 was lowest in summer and highest in spring. The regional MLH developed the earliest
32 in summer (at approximately 7:00 LT) and reached the highest growth rates (164.5 m
33 h⁻¹) at approximately 11:00 LT, while in winter, the regional MLH developed much
34 later (at approximately 9:00 LT), with the maximum growth rates (101.8 m h⁻¹)
35 occurring at 11:00 LT. As a typical site in southern Hebei, the annual mean of MLH at
36 SJZ was 464±183 m, which was 15.0 % and 21.9 % lower than that at the BJ
37 (594±183 m) and TJ (546±197 m) stations, respectively. Investigation of radiation and
38 wind shear at NCP revealed that the net radiation was almost consistent on a regional
39 scale, and the lower MLH in southern Hebei was mainly due to the 1.9-2.8-fold
40 higher intensity of wind shear on the northern NCP than in southern Hebei at an
41 altitude of 300-1700 m. Furthermore, the ventilation coefficient and the relative
42 humidity in southern Hebei were 1.1-2.1 times smaller and 13.2-22.1 % higher than

43 that on the northern NCP, respectively. As a result, severe haze pollution occurred
44 much more readily in southern Hebei and the annual means of near-ground PM_{2.5}
45 concentrations were almost 1.3 times higher than those of the northern areas. Due to
46 the unfavorable weather conditions, industrial capacity should be reduced in southern
47 Hebei, heavily polluting enterprises should be relocated and strong emission reduction
48 measures are required to improve the air quality.

49 1. Introduction

50 The convective boundary layer is the region where turbulence is fully developed.
51 The height of the interface where turbulence is discontinuous is usually referred to as
52 the mixing layer height (MLH) (Stull, 1988). The mixing layer is regarded as the link
53 between the near-surface and free atmosphere, and the MLH is one of the major
54 factors affecting atmospheric dissipation ability, which determines both the volume
55 into which ground-emitted pollutants can disperse, as well as the convective time
56 scales within the mixing layer (Seidel et al., 2010). In addition, continuous MLH
57 observations will be of great importance for the improvement of boundary layer
58 parameterization schemes and for the promotion of meteorological model accuracy.

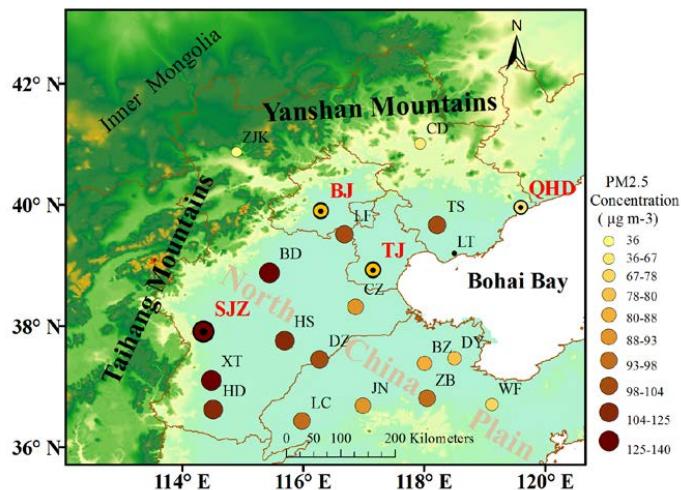
59 Conventionally, the MLH is usually estimated from radiosonde profiles (Seidel et
60 al., 2010). Although meteorological radiosonde observations can provide high-quality
61 data, they are not suitable for continuous fine-resolution MLH retrievals due to their
62 high cost and limited observation intervals (Seibert et al., 2000). As the most
63 advanced method of MLH detection, remote sensing techniques based on the profile
64 measurements from ground-based instruments such as sodar, radar, or lidar that have
65 the unique vertically resolved observational capability are becoming increasingly
66 popular (Beyrich, 1997; Chen et al., 2001; He et al., 2005). Because sound waves can
67 be easily attenuated in the atmosphere, the vertical range of sodar is generally limited
68 to within 1000 m. However, the optical remote sensing techniques can provide higher
69 height ranges (at least several kilometers). The single-lens ceilometers developed by
70 Vaisala have been widely used in a variety of MLH studies (e.g., Emeis et al., 2004;
71 Emeis et al., 2009; Emeis et al., 2011; Eresmaa et al., 2006; Münkel et al., 2006;
72 Muñoz and Undurraga, 2010; Munkel and Rasanen, 2004; Schween et al., 2014;
73 Sokol et al., 2014; Tang et al., 2016; Tang et al., 2015b). Compared with other remote
74 sensing instruments, this type of lidar has special features favorable for long-term and
75 multi-station observations (Emeis et al., 2009; Wiegner et al., 2014; Tang et al., 2016),
76 including the low-power system, the eye-safe operation within a near infrared laser
77 band, and the low cost and ease of maintenance during any weather conditions
78 (excluding rainy, strong windy or sandstorm weather conditions) with only regular
79 window cleaning required (Emeis et al., 2004; Tang et al., 2016).

80 The North China Plain (NCP) region is the political, economic and cultural center
81 of China. With the rapid economic development, energy use has increased
82 substantially, resulting in frequent air pollution episodes (e.g., Guo et al., 2011; Li et
83 al., 2013; Liu et al., 2016; Tang et al., 2015a; Wang et al., 2014; Wang et al., 2013; Xu
84 et al., 2016; Zhang et al., 2014). The haze pollution has had an adverse impact on
85 human health (Tang et al., 2017a) and has aroused a great deal of concern (Tang et al.,
86 2009; Ji et al., 2012; Zhang et al., 2015). To achieve the integrated of development of

87 the Jing-Jin-Ji region, readjustment of the regional industrial structure and layout is
88 imperative. To this end, the industrial capacity of heavily polluting enterprises in the
89 areas with unfavorable weather conditions should be reduced, and these heavily
90 polluting enterprises should be removed to improve the air quality. For the remaining
91 enterprises, the industrial air pollutant emissions structure should be changed, and
92 strong emission reduction measures must be implemented. Although the government
93 has carried out some strategies for joint prevention and control, with the less
94 well-understood distributions of regional weather condition status on the NCP, how
95 and where to adjust the industrial structures on the NCP are questions in pressing need
96 of answers. As one of the key factors influencing the regional heavy haze pollution
97 (Tang et al., 2012; Quan et al., 2013; Hu et al., 2014; Tang et al., 2016; Zhu et al.,
98 2016; Tang et al., 2017b; Zhang et al., 2016), the MLH to some extent represents the
99 atmospheric environment capacity, and the regional distribution and variation of MLH
100 in the NCP can offer a scientific basis for regional industrial distribution readjustment,
101 which will be of great importance for regional haze management.

102 Nevertheless, due to the scarcity of MLH observations on the NCP, reliable and
103 explicit characteristics of MLH on the NCP remain unknown. Tang et al. (2016)
104 utilized the long-term observation data of MLH from ceilometers to analyze the
105 characteristics of MLH variations in Beijing (BJ) and verified the reliability of
106 ceilometers. The results demonstrated that MLH in BJ was high in spring and summer
107 and low in autumn and winter with two transition months in February and September.
108 A multi-station analysis of MLH in the NCP region was conducted in February 2014,
109 and the characteristics of high MLH at coastal stations and low MLH at southwest
110 piedmont stations were reported (Li et al., 2015). Miao et al. (2015) modeled the
111 seasonal variations of MLH on the NCP and discovered that the MLH was high in
112 spring due to the strong mechanical forcing and low in winter as a result of the strong
113 thermodynamic stability in the near-surface layer. The mountain-plain breeze and the
114 sea breeze circulations played an important role in the mixing layer process when the
115 background synoptic patterns were weak in summer and autumn (Tang et al., 2016).

116 However, the regional MLH simulation analysis is incomplete without verification
117 with long-term measured MLH data. To overcome previous studies' deficiencies, our
118 study first conducted a 22-months (from 16 October 2013 to 15 July 2015)
119 observation of MLH with ceilometers on the NCP. The observation stations included
120 three inland stations [e.g., BJ, Shijiazhuang (SJZ) and Tianjin (TJ)] and one coastal
121 site [e.g., Qinhuangdao (QHD)]. First, we will describe the spatial and temporal
122 distribution of MLH on the NCP. Subsequently, reasons for MLH differences on the
123 NCP will be explained in the discussion section. Finally, the weather conditions on the
124 NCP are described to provide a scientific basis for regional industrial structure
125 readjustment.


126 **2 Data and methods**

127 **2.1 Sites**

128 To study the regional MLH characteristics in the NCP region, observations with
129 ceilometers were conducted at the BJ, SJZ, TJ and QHD stations (Fig. 1 and Table 1).
130 The SJZ, TJ and QHD sites were set around Beijing in the east, southeast and

131 southwest direction, respectively. The BJ station was at the base of the Taihang and
132 Yanshan Mountains on the northern NCP. The MLH observation site was built in the
133 courtyard of the Institute of Atmospheric Physics, Chinese Academy of Sciences
134 (116.32° E, 39.90° N). SJZ was near the Taihang Mountain in southern Hebei; the
135 location was in the Hebei University of Economics (114.26° E, 38.03° N). The TJ site
136 was set in the courtyard of the Tianjin Meteorological Bureau, which was located
137 south of the urban area, with a geographic location of 117.20° E, 39.13° N. The QHD
138 station was an eastern coastal site of Bohai Bay, which was set up in the
139 Environmental Management College of China (119.57° E, 39.95° N) and the
140 surrounding areas are mostly residential buildings with no high structures.

141
142 Fig. 1. Locations of the ceilometers observation sites (BJ, SJZ, TJ and QHD) are
143 marked with red and bold abbreviations; other PM_{2.5} observation sites (ZJK, CD, LF,
144 TS, CZ, BD, HS, XT, HD, DZ, LC, JN, BZ, DY, ZB and WF) and the sounding
145 observation sites (BJ, LT and XT) are marked on the map with black abbreviations.
146 The size and color of the circular mark are representatives of the annual mean of
147 near-ground PM_{2.5} concentration; the larger and darker the circle, the greater the
148 concentrations.
149
150
151
152
153
154
155
156
157
158
159

160 Table 1. Specific information of the observation sites on the NCP.

Cityname	Abbreviation	Province or municipality	Longitude	Latitude
Beijing ^{a,b,c}	BJ	Beijing	116.32° E	39.90° N
Tianjin ^{a,b}	TJ	Tianjin	117.20° E	39.13° N
Shijiazhuang ^{a,b}	SJZ	Hebei	114.26° E	38.03° N
Langfang ^a	LF	Hebei	116.70° E	39.53° N
Tangshan ^a	TS	Hebei	118.02° E	39.68° N
Qinhuangdao ^{a,b}	QHD	Hebei	119.57° E	39.95° N
Zhangjiakou ^a	ZJK	Hebei	114.92° E	40.90° N
Chengde ^a	CD	Hebei	117.89° E	40.97° N
Laotong ^{b,c}	LT	Hebei	118.90° E	39.31° N
Cangzhou ^a	CZ	Hebei	116.83° E	38.33° N
Baoding ^a	BD	Hebei	115.48° E	38.85° N
Hengshui ^a	HS	Hebei	115.72° E	37.72° N
Xingtai ^{b,c}	XT	Hebei	114.48° E	37.05° N
Handan ^a	HD	Hebei	114.47° E	36.60° N
Dezhou ^a	DZ	Shandong	116.29° E	37.45° N
Liaocheng ^a	LC	Shandong	115.97° E	36.45° N
Jinan ^a	JN	Shandong	116.98° E	36.67° N
Binzhou ^a	BZ	Shandong	118.02° E	37.22° N
Dongying ^a	DY	Shandong	118.49° E	37.46° N
Zibo ^a	ZB	Shandong	118.05° E	36.78° N
Weifang ^a	WF	Shandong	119.06° E	36.68° N

161 ^aCeilometer observation sites.

162 ^bNear-ground PM_{2.5} concentration sites.

163 ^cRadiosonde observation sites.

164

165 2.2 Measurement of MLH

166 The instrument used to measure the MLH at the four stations was an enhanced
167 single-lens ceilometer (Vaisala, Finland), which utilized the strobe laser lidar (laser
168 detection and range measurement) technique (910 nm) to measure the attenuated
169 backscattering coefficient profiles. As large differences existed in the aerosol
170 concentrations between the mixing layer and the free atmosphere, the MLH can be
171 determined from the vertical attenuated backscattering coefficient (β) gradient,
172 whereby a strong, sudden change in the negative gradient ($-d\beta/dx$) can indicate the
173 MLH. In the present study, the Vaisala software product BL-VIEW was utilized to
174 calculate the MLH by determining the location of the maximum $-d\beta/dx$ in the
175 attenuated backscattering coefficient. To strengthen the echo signals and reduce the
176 detection noise, spatial and temporal averaging should be conducted before the
177 gradient method is used to calculate the MLH. The BL-VIEW software was utilized
178 with temporal smoothing of 1200 s and vertical distance smoothing of 240 m. The
179 instrument installed at the BJ station was a CL31 ceilometer and the CL51

180 centimeters were used at the SJZ, TJ and QHD stations. Some of the properties of
181 these two instruments are listed in Table 2, and basic technical descriptions can be
182 found in Münkel et al. (2007) and Tang et al. (2015).

183 To ensure the consistency of the MLH measured with the two different versions of
184 ceilometers, before we set up the ceilometers at different stations, we made a
185 comparison of the MLH observed by CL31 and CL51 at BJ from October 1 to October
186 8, 2013 (Fig. S1). The MLH observed by CL 31 was highly correlated with those
187 observed by each of the three CL51 ceilometers, with relative correlation coefficients
188 (R) of 0.92, 0.86 and 0.92. Therefore, the impact of version discrepancy on MLH
189 measurement can be neglected.

190 Table 2. Instrument properties of CL31 and CL51

Parameter	CL31	CL51
Detection range (km)	7.7	13.0
Wavelength (nm)	910	910
Report period (s)	2-120	6-120
Report accuracy	5m	10m
Peak power (W)	310	310

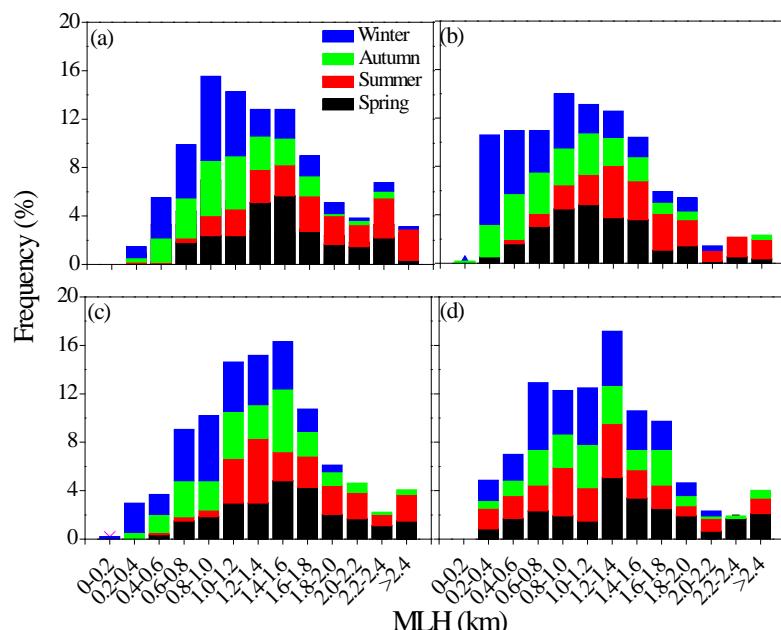
191 2.3 Other data

192 The hourly data of relative humidity (RH), temperature (T), near-ground wind
193 speed (WS) and direction at the BJ, SJZ, TJ and QHD stations were obtained from
194 China Meteorological Administration
195 (<http://www.weather.com.cn/weather/101010100.shtml>). Hourly net (0.2-100 μ m)
196 radiation data at the BJ, TJ and SJZ sites were observed using a net radiometer (NR
197 Lite2, Kipp & Zonen, Netherlands), detailed information is included in Hu et al.,
198 (2012). Because the SJZ and QHD stations are missing radio sounding data, sounding
199 data from the XT and LT stations were used instead. Sounding data of WS and
200 direction at the BJ, XT and LT stations were provided by the upgraded radiosonde
201 network of China, where the GTS1 digital electronic radiosonde was required to be
202 operationally launched twice per day at 08:00 LT and 20:00 LT by the China
203 Meteorological Administration (Guo et al., 2016).

204 The near-ground $PM_{2.5}$ and PM_{10} concentrations at the 20 observation sites from
205 December 2013 to November 2014 were provided by the Ministry of Environmental
206 Protection (<http://www.zhb.gov.cn/>) with a time resolution of 1 h. Details for the
207 near-ground $PM_{2.5}$ and PM_{10} observation sites are listed in Table 1 and Fig. 1.

208 3 Results

209 3.1 Frequency distribution of regional MLH


210 Continuous operation of the ceilometers since October 2013 has provided 22
211 months of data, and for the purpose of analyzing of the MLH variability in the NCP
212 region, the hourly averages of MLH for a whole year (from December 2013 to
213 November 2014) at the BJ, SJZ, TJ and QHD stations were utilized in the following
214 study. Hourly means of MLH under rainy, sandstorm and windy conditions were
215 removed (Muñoz and Undurraga, 2010; Tang et al., 2016; van der Kamp and
216 McKendry, 2010), resulting in data availability of 81, 89, 83 and 77 % at the BJ, SJZ,
217 TJ and QHD stations, respectively. The frequency distribution of daily maximum

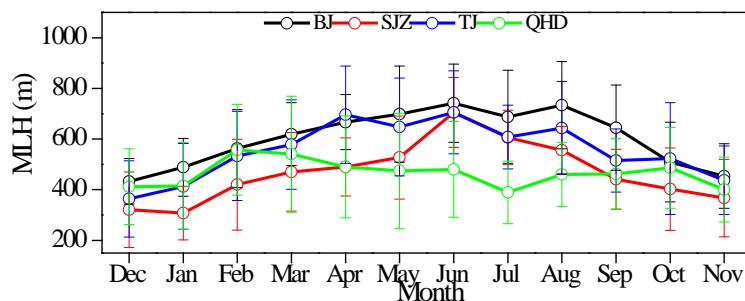
218 MLH is shown in Fig. 2. In this study, March, April and May are defined as spring;
219 June, July and August are defined as summer; September, October and November are
220 defined as autumn; and December, January and February are defined as winter.

221 The daily maximum MLH at the BJ, SJZ and TJ stations reached 2400 m, and the
222 high daily maximum values mostly occurred in spring and summer, while the low
223 values occurred in autumn and winter and were as low as 200 m. The maximum MLH
224 values at the BJ, SJZ and TJ stations were mainly distributed between 600 and 1800
225 m, 400 and 1600 m and 800 and 1800 m, respectively, and they accounted for 74.2,
226 72.0 and 67.0 % of the total samples, respectively. Notably, the daily maximum MLH
227 at SJZ was lower in spring, autumn and winter in comparison with those at the BJ and
228 TJ stations. Values below 600 m at the SJZ station occurred primarily in autumn and
229 winter; the most frequent daily maximum MLH was in the range from 1000 to 1200
230 m, which was 200-600 m lower than that at the TJ station. This pattern demonstrated a
231 weaker atmospheric diffusion capability at SJZ in spring, autumn and winter than at
232 the northern stations.

233 The frequency distribution of the daily maximum MLH at the coastal station was
234 different. The daily maximum MLH at QHD was mainly distributed between 800 and
235 1800 m with relatively uniform seasonal distributions (Fig. 2d). Values lower than 600
236 m mainly occurred in summer, which was probably influenced by the frequent
237 occurrence of a thermal internal boundary layer in summer (van der Kamp and
238 McKendry, 2010).

239
240 Fig. 2. Frequency distribution of daily maximum MLH at the (a) BJ, (b) SJZ, (c) TJ
241 and (d) QHD stations from December 2013 to November 2014.

242 3.2 Spatiotemporal variation of regional MLH


243 3.2.1 Seasonal variation

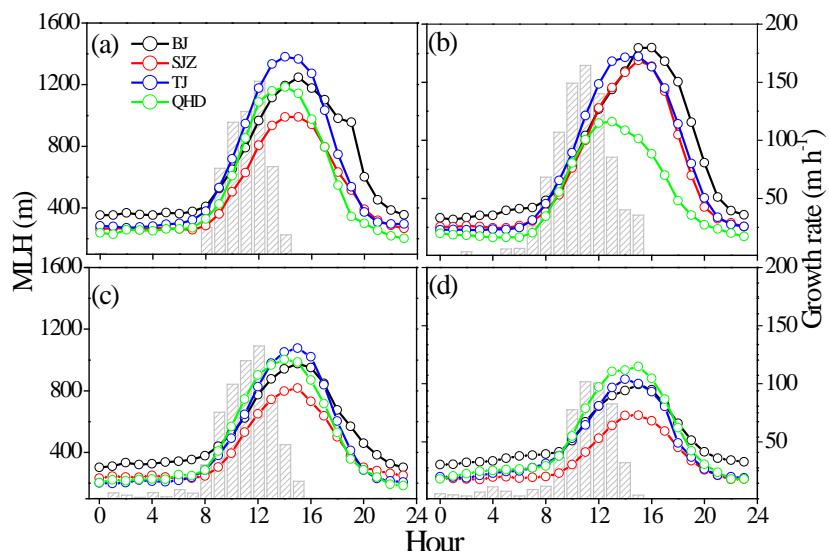
244 Monthly variations of MLH at the BJ, SJZ, TJ and QHD stations are shown in Fig.
245 3. The monthly means of the regional MLH ranged between 300 and 750 m; the
246 maximum and minimum MLH occurred in June 2014 at the BJ station and in January
247 2014 at the SJZ station, with values of 741 and 308 m, respectively. Most of the
248 monthly averages were between 400 and 700 m, which accounted for 81.3 % of the
249 total samples.

250 The MLH at the BJ, SJZ and TJ stations showed obvious seasonal variations with
251 high values in spring and summer and low values in autumn and winter. Seasonal
252 means of MLH at the three stations followed the same order:
253 summer>spring>autumn>winter, with maximum values of 722 ± 169 , 623 ± 161 and
254 655 ± 165 m in summer, respectively, and minimum values of 493 ± 131 , 347 ± 153 and
255 436 ± 178 m in winter, respectively (Table S1). Obvious annual changes of the MLH
256 with large amplitude at the BJ, SJZ and TJ stations implied that MLH is influenced by
257 seasonal changes of solar radiation, and in summer, the intense solar radiation favors
258 the development of MLH (Stull, 1988).

259 Nevertheless, the seasonal variation of MLH at the coastal site of Bohai was
260 different from that at the inland stations. The MLH at QHD exhibited a decreasing
261 trend from spring to summer and increasing trend from autumn to winter, and the
262 maximum seasonal mean at QHD was 498 ± 217 m in spring and the minimum was
263 447 ± 153 m in summer. Moreover, the MLH in spring and summer at QHD was much
264 lower than at other stations. Similar to our analysis of frequency distributions of daily
265 maximum MLH in Section 3.1, the lower MLH at QHD in spring and summer mainly
266 resulted from the frequent occurrence of sea breeze (Fig. 5). Under the influence of
267 the abrupt change of aerodynamic roughness and temperature between the land and
268 sea surfaces, a thermal internal boundary layer will occur frequently in the coastal
269 areas, which will decrease the average MLH to some extent. This impact of sea breeze
270 on the coastal boundary layer was consistent with previous studies (Zhang et al., 2013;
271 Tu et al., 2012), which demonstrated that ceilometers can properly retrieve the coastal
272 MLH as well.

273
274 Fig. 3 Monthly variations of MLH at the BJ, SJZ, TJ and QHD stations from
275 December 2013 to November 2014.

276 Annual averages of MLH at the BJ, SJZ, TJ and QHD stations were also calculated,
277 and the values were 594 ± 183 , 464 ± 183 , 546 ± 197 and 465 ± 175 m, respectively. The
278 MLH at SJZ was approximately 21.9, 15.0 and 0.2 % lower than at the BJ, TJ and



279 QHD stations, respectively, which revealed a more stable atmospheric stratification
280 and weaker atmospheric environment capability in southern Hebei.

281 3.2.2 Diurnal variations

282 Seasonal variations of diurnal MLH change patterns were investigated to reveal the
283 24 h evolution characteristics of the regional MLH on the NCP. As shown in Fig. 4,
284 diurnal variations of regional MLH in different seasons all had single peak patterns.
285 With sunrise and increased solar radiation, MLH at the four stations started to develop
286 and peaked in the early afternoon. After sunset, turbulence in the MLH decayed
287 quickly, and the mixing layer underwent a transition to the nocturnal stable layer (less
288 than 400 m). The averaged annual daily ranges of MLH at the BJ, SJZ, TJ and QHD
289 stations were 782, 699, 914 and 790 m, respectively, and the averaged annual daily
290 range of MLH at SJZ was 100–200 m smaller than at other stations. When we referred
291 to the diurnal variations of regional MLH in different seasons, we found that the
292 lower annual daily range at the SJZ station was associated with its lower values of
293 daytime MLH in spring, autumn and winter (Figs. 4a, 4c and 4d).

294 Average growth rates for the four stations demonstrated that the growth rates of the
295 regional MLH varied by season. The MLH developed earliest in summer (at
296 approximately 7:00 LT) and reached the highest growth rates (164.5 m h^{-1}) at
297 approximately 11:00 LT, and the time when MLH started to develop was found to be
298 1 hour later (at approximately 8:00 LT) in spring and autumn than in summer.
299 Furthermore, the MLH developed the latest (at approximately 9:00 LT) and slowest in
300 winter, with the maximum growth rate (101.8 m h^{-1}) occurring at approximately 11:00
301 LT.

302
303 Fig. 4. Diurnal variations of MLH at the BJ, SJZ, TJ and QHD stations in (a) spring,
304 (b) summer, (c) autumn and (d) winter seasons are indicated by lines and scatters. The
305 averaged growth rates at the four sites are depicted with gray columns for each season
306 to represent the regional MLH growth velocity, and only positive values are shown in

307 the figure.

308 Comparison of the MLH peaking time between the four stations showed that the
309 maximum MLH at the TJ and QHD stations arrived earlier than at the BJ and SJZ
310 stations in spring and summer (Figs. 4a and 4b). However, in autumn and winter, such
311 a characteristic was not evident (Figs.4c and 4d).

312 As shown in Fig. 5, under the influence of the Siberian High and the geographic
313 location effect, northerly and northwesterly winds prevailed in autumn and winter at
314 the four stations. In spring and summer, the northward lift and westward intrusion of a
315 subtropical high causes the weak southerly wind to arrive and dominate in the NCP
316 region. Without a large- or medium-scale weather system passing through, the sea
317 breeze will play a role in the coastal area. Although the TJ station was supposed to be
318 an inland site, it was still affected by the sea breeze to some extent. Due to the
319 shoreline orientation and regional topography differences between TJ and QHD (Fig.
320 1), when a sea breeze occurred, easterly wind prevailed at the former station and
321 easterly, and south-southwesterly wind blew at the latter station in spring and summer
322 (Figs.5c and 5d). Statistical results revealed that from March 2014 to August 2014, the
323 frequency of sea breeze occurrence at the TJ and QHD stations could reach 53.8 and
324 92.4 %, respectively, and the sea breeze usually started at midday (approximately
325 11:00 LT).

326 Generally, the vertical development of the mixing layer is heavily reliant on the
327 vertical turbulence, but when sea breeze is present, cool air advection from the sea
328 breeze circulation will suppress this vertical mixing intensity (Puiggrenier et al., 2005).
329 The co-existence of vertical turbulence and advection caused the MLH to decrease
330 and peak earlier. Meanwhile, the local mixing layer will be replaced by the thermal
331 internal boundary layer (Tomasi et al., 2011). As a result, the earlier peaking time of
332 MLH in spring and summer could be attributed to the sea breeze effect. The MLH
333 peaking time at the TJ station was approximately 1-2 hours later than at the QHD
334 station, which indicated that such a sea breeze impact will weaken with distance from
335 the coast (Huang et al., 2016).

336

337

338

339

340

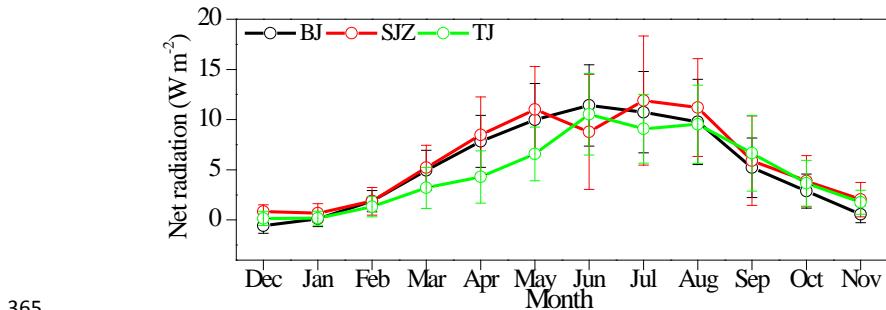
341

342

343

344

345

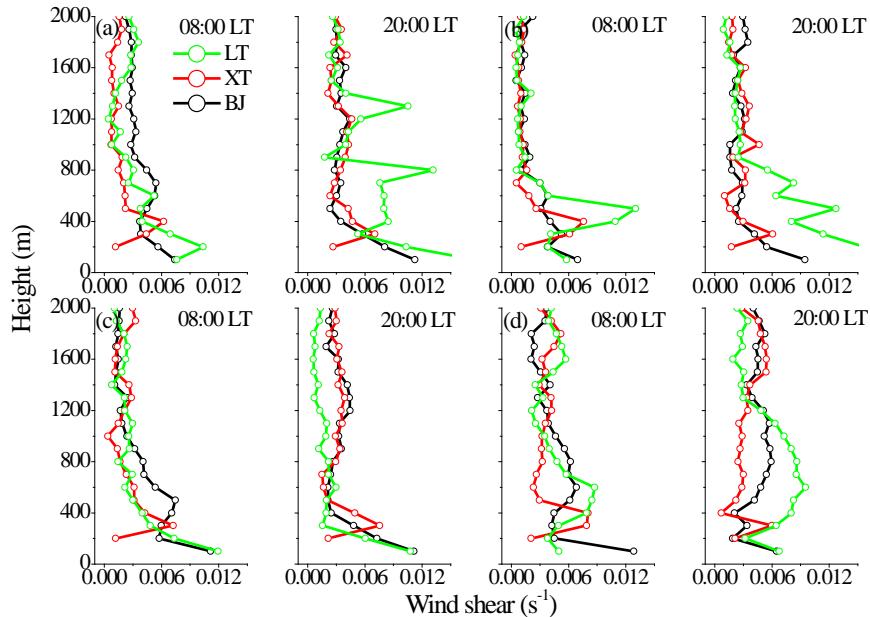

346 Fig. 5 Frequency of wind direction at the (a) BJ, (b) SJZ, (c) TJ and (d) QHD stations
347 in different seasons.

348
349 Therefore, according to the analysis above in Sections 3.1 to 3.2, an obvious
350 phenomenon can be observed in the MLH distribution in the NCP region: the MLH
351 was lower in southern Hebei than on the northern NCP in spring, autumn and winter
352 but was almost equal to the northern areas in summer.

353 4. Discussion

354 4.1 Reasons for low MLH in southern Hebei

355 Turbulent energy was mainly responsible for the MLH development, and the
356 generation of turbulent energy was highly correlated with the buoyancy flux (mainly
357 heat and moisture fluxes) produced by net radiation and the momentum flux caused
358 by wind shear (Stull, 1988). We first compared the net radiation among the BJ, SJZ
359 and TJ observation sites. As shown in Fig. 6, the seasonal net radiation variations
360 were almost consistent among the three stations, and they were high in spring and
361 summer and low in autumn and winter, with annual averages of 5.4, 6.0 and 4.8 W
362 m⁻², respectively. The comparable net radiation values at the BJ and SJZ stations
363 indicated that the buoyancy flux was unable to explain the MLH differences between
364 the northern NCP and southern Hebei.


365 Fig. 6 Monthly variations in net radiation at the BJ, SJZ and TJ sites.

366 Wind shear was defined and calculated according to Eq. (1):

$$368 \text{wind shear} = \sqrt{\left(\frac{du}{dz}\right)^2 + \left(\frac{dv}{dz}\right)^2} \quad (1)$$

369 where dz is the height difference between two layers at which the vertical wind shear
 370 is estimated and du and dv are the differences in zonal and meridional directions in
 371 the two different layers (Hyun et al., 2005). Considering the geographic locations (Fig.
 372 1), the lack of sounding data at the SJZ station was addressed by replacement with
 373 sounding data from another southern Hebei station (e.g., the XT station); meanwhile,
 374 sounding data from another coastal site (e.g., the LT station) were used instead of
 375 from the QHD station. Observations were conducted at 8:00 LT and 20:00 LT each
 376 day from December 2013 to November 2014, and the wind shear was averaged every
 377 100 m for each sounding profile.

378 When we analyzed the seasonal means of wind shears between southern Hebei (XT)
 379 and the northern NCP (BJ), some distinct features were observed, as shown in Fig. 7.
 380 Considering that the regional MLH at 08:00 LT and 20:00 LT was mostly below 300
 381 m (Fig. 4), wind shears in southern Hebei were lower than those in the northern NCP
 382 below 300 m but were nearly consistent at the altitude of 300 m both at 08:00 LT and
 383 20:00 LT during the whole year. However, above 300 m at 08:00 LT, wind shears at
 384 XT were significantly different from those at BJ again at the altitude of 300-1700 m
 385 and, on average, approximately 2.8, 2.5 and 1.9 times smaller than at the BJ stations
 386 in spring, autumn and winter, respectively (Figs. 7a, 7c and 7d). The largest
 387 discrepancies reached 3.4, 4.3, and 4.5 $\text{m s}^{-1} \text{ km}^{-1}$ in spring, autumn and winter,
 388 respectively, and were at the altitude between 500 and 700 m. In summer, the
 389 averaged differences narrowed down to only 1.2-fold above 300 m (Fig. 7b).
 390 Compared to wind shears at 20:00 LT above 300 m in spring, autumn and winter,
 391 mechanical forces were clearly enhanced in BJ at the height of 300-1700 m during the
 392 whole night and the turbulent energy was restored in the residual layer. With the
 393 increase of solar radiation in the morning, the MLH developed and broke through the
 394 residual layer. At this time, the combination of buoyancy and wind shear forces will
 395 contribute to a higher MLH at BJ during daytime. Furthermore, the larger wind shears
 396 below 300 m during night time at the BJ station could partly explain the higher
 397 nocturnal boundary layer on the northern NCP (Fig. 4).

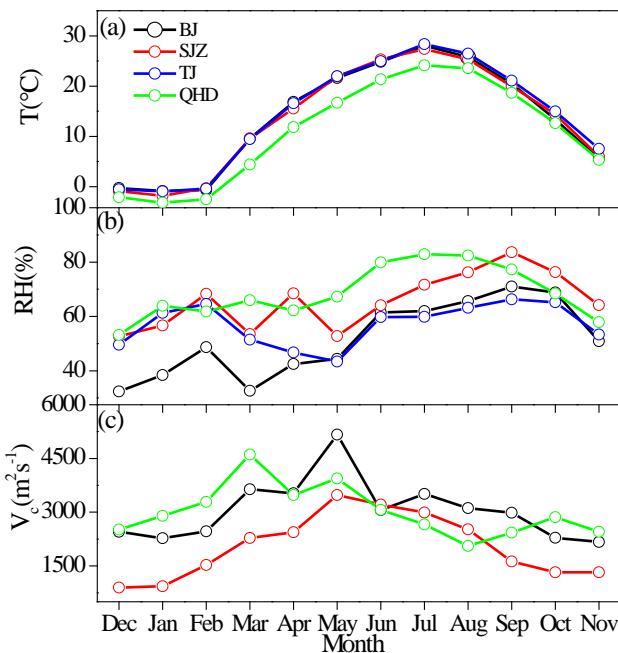
398

399 Fig.7 Vertical profiles of wind shear at the BJ, XT and LT stations in (a) spring, (b)
 400 summer, (c) autumn and (d) winter.

401 The lower MLH in southern Hebei was the result of the lessened mechanical
 402 forcing due to wind shear at night than occurred in the northern areas in spring,
 403 autumn and winter. This pattern could be attributed to the influence of the active
 404 fronts passing by under the impact of the Siberian High, and usually, this front system
 405 does not reach southern Hebei. In summer, due to the influence of the subtropical high
 406 on the NCP and the relatively greater solar radiation, the lessened effects of the front
 407 system and strong turbulent exchange will lead to less wind shear contrast in the
 408 vertical direction between southern Hebei and the northern NCP.

409 **4.2 Meteorological evidence of serious air pollution in southern Hebei**

410 When we analyzed the near-ground $PM_{2.5}$ and PM_{10} concentrations distribution on
 411 the NCP from December 2013 to November 2014, a unique phenomenon was found
 412 and shown in Fig. 1 and Fig. S3. The annual means of near-ground $PM_{2.5}$
 413 concentration in southern Hebei (SJZ, XT, HS, HD and DZ) was $124.1 \mu g m^{-3}$ ($218.8 \mu g m^{-3}$ for the PM_{10} concentrations), while in the northern areas (BJ, TJ, LF and TS),
 414 it was $94.9 \mu g m^{-3}$ ($145.5 \mu g m^{-3}$ for the PM_{10} concentrations), and the difference in
 415 near-ground $PM_{2.5}$ concentration between these two areas can be as high as 1.3-fold
 416 (1.5-fold for the PM_{10} concentrations). Considering the low MLH in southern Hebei,
 417 heavy pollution in southern Hebei may be related with weaker weather conditions,
 418 and some other meteorological factors may play a part.


419 Previous studies revealed that the most significant meteorological factors for
 420 regional heavy haze formation on the NCP were RH and MLH (Tang et al., 2016; Zhu
 421 et al., 2016). However, due to the lack of wind profiles, Tang et al. (2015) utilized the
 422 near-surface WS to estimate the ventilation coefficients (V_c), and the result was not

424 sufficiently precise and could not portray the regional pollution dissipation ability
425 accurately. In this study, we utilized wind sounding data to enable an exact evaluation
426 of the regional pollutant dissipation ability. Furthermore, temperature is the main
427 factor in new particle formation, and RH determines the growth rates of particles,
428 which are the most influential meteorological factors for particle formation. As a
429 consequence, in the next section, we will separately analyze the regional particle
430 formation and dissipation ability, each from a meteorological point of view.

431 4.2.1 Meteorological factors for particle formation

432 Monthly variations of T and RH are shown in Fig. 8. The T in the southern Hebei
433 was similar to that on the northern NCP in variation pattern and quantity but was
434 approximately 19.3 % higher than at the coastal site (Fig. 8a). Under the same
435 temperature conditions, the new particle formation ability will be the same between
436 these two areas. However, differences existed in RH between southern Hebei and the
437 northern NCP. The RH at the SJZ station was always higher than at the BJ and TJ
438 stations but was slightly lower than at the QHD station through the year (Fig. 8b). The
439 annual averages of RH at the BJ, SJZ, TJ and QHD sites were 51.2, 65.7, 57.0 and
440 68.6 %, respectively, and the RH at SJZ was 22.1 and 13.2 % higher than at the BJ
441 and TJ sites, respectively (Table S2). As RH is also a key factor for haze development
442 and determines the particle growth rate through hygroscopic growth and secondary
443 formations (Zhao et al., 2013; Fu et al., 2014), even though the new particle formation
444 conditions were the same between these two areas, particles can grow larger under
445 high RH, leading to heavier pollution in southern Hebei.

446
447 Fig. 8 Seasonal variations of (a) T, (b) RH and (c) V_c at the BJ, SJZ, TJ and QHD
448 stations from December 2013 to November 2014.

449 **4.2.2 Meteorological factors for particle dissipation**

450 As MLH and WS can represent the atmospheric dissipation capability in the
451 vertical and horizontal directions, respectively, in addition to the MLH, we also
452 analyzed the WS variations on the NCP. Similar to our analysis in Section 4.1, as SJZ
453 and QHD had no sounding data and due to the close geographic proximity among SJZ
454 and XT as well as LT and QHD, sounding data from the XT and LT stations were used
455 instead of the data at SJZ and QHD, respectively. The WS profiles were averaged
456 every 100 m at each stations and are depicted in Fig. S2. Except for summer, the WS
457 in southern Hebei was far less than that on the northern NCP and coastal areas both at
458 08:00 LT and 20:00 LT in spring, autumn and winter (Fig. S2a, S2c and S2d) but was
459 nearly consistent in summer (Fig. S2b). This finding indicated a weaker horizontal
460 diffusion capability in southern Hebei than on the northern NCP and at the coastal
461 sites.

462 The ventilation coefficient is an important factor in pollutant dissipation and air
463 quality studies; it accounts for the vertical dispersion and advection of pollutants.
464 With larger V_c , strong dissipation ability follows. The V_c is defined as the product of
465 MLH to the wind transport (U_T) and is shown in Eq. (2).

$$466 \quad V_c = \text{MLH} \times U_T \quad (2)$$

467 When we utilized the wind profiles in Fig. S2 with equal spacing in the vertical
468 direction, U_T could be regarded as the mean wind transport, i.e., $U_T = \frac{1}{n} \sum_{i=1}^n U_i$ and U_i
469 is the wind observed at each level and n is the number of levels within the mixing
470 layer (Nair et al., 2007). As the profiles of WS for each station were almost the same
471 in the morning and at night (Fig. S2), it was considered reasonable to regard the
472 sounding data of WS as a climatological constant, and the V_c within the mixing layer
473 could then be calculated. Considering the monthly averaged MLH at the BJ, SJZ and
474 QHD stations, the monthly V_c is depicted in Fig. 8c. V_c at the southern Hebei was
475 always lower than the northern NCP during the whole study period. The seasonal
476 means of V_c at the BJ, SJZ and QHD stations in spring, summer, autumn and winter
477 were 4112.0, 2733.3 and 4008.5; 3227.5, 2908.8 and 2593.7; 2481.4, 1421.9 and
478 2581.7; and 2397.2, 1117.7 and 2900.0 $\text{m}^2 \text{s}^{-1}$, respectively. It was clear that the SJZ
479 station usually had the lowest V_c , and the annual averaged V_c at SJZ was almost 1.5
480 and 1.5 times smaller than the BJ and QHD stations, respectively (Table S2). As a
481 result, the particle dissipation capability in southern Hebei was much weaker than in
482 the northern and coastal areas.

483 Therefore, due to the lower atmospheric environment capability, the weaker
484 dissipation ability and stronger particle formation ability, the particles were more
485 easily accumulated and severe haze occurred frequently in southern Hebei. This
486 finding indicated that the industrial structure of southern Hebei is in need of
487 readjustment.

488 **5. Conclusions**

489 To gain new insight into the spatiotemporal variation of the regional MLH, the
490 present study conducted a simultaneous observation with ceilometers at three inland
491 stations (e.g., BJ, SJZ, and TJ) and one coastal site (e.g., QHD) to obtain high spatial

492 and temporal resolution MLH data. The experiment period lasted for 22-months from
493 October 16, 2013, to July 15, 2015, and one year's data (e.g., from December 2013 to
494 November 2014) were utilized for further study. Conclusions were drawn as follows.

495 The MLH in the inland areas of the NCP was high in spring and summer and low in
496 autumn and winter. Under the effects of sea breeze and a thermal internal boundary
497 layer, the seasonal variation of the MLH in the coastal area of Bohai was different
498 from that of the inland stations, and the lowest MLH was occurred in summer. The
499 MLH peaked earlier at the coastal site in spring and summer than at the inland
500 stations, and this effect weakened with distance from the coast. This effect of sea
501 breeze on coastal MLH was consistent with previous studies, which demonstrated that
502 not only can the mainland MLH be retrieved from ceilometers, but the coastal MLH
503 can be observed with ceilometers.

504 The MLH in southern Hebei was lower than that on the northern NCP, especially in
505 spring, autumn and winter. As there was little radiation difference between these two
506 areas, the lower MLH in the southern Hebei mainly resulted from the stronger
507 intensity of wind shears on the northern NCP than in southern Hebei at an altitude of
508 300-1700 m in residual layers. In summer, the wind shear difference lessened, and the
509 MLHs between the southern and northern areas were nearly consistent.

510 From a meteorological point of view, the weaker atmospheric environment
511 capability combined with the weaker pollutant dissipation ability and the stronger
512 pollutant formation ability will cause severe haze to occur easily in southern Hebei,
513 and the industrial layout in southern Hebei is in need of restructuring. Heavily
514 polluting enterprises should be relocated to locations with better weather conditions
515 (e.g., certain northern areas and coastal areas), and strong emission reduction
516 measures should be implemented in the remaining industrial enterprises to improve
517 air quality.

518 Overall, the present study is the first to conduct a long-term observation of the
519 MLH with high spatial resolution on a regional scale. The observation results will be
520 of great importance for model parameterization scheme promotion and provide basic
521 information for the distribution of weather conditions in the NCP region. The
522 deficiency of this study is that we took no account of the transport effect on PM_{2.5}
523 concentrations. Because pollutants are usually transported from south to north in the
524 NCP region during haze episodes (Zhu et al., 2016; Tang et al., 2015), the pollutant
525 transport has a greater impact on northern areas and had less of an influence on the
526 results of this analysis. The absence of sounding data at noon is another shortcoming,
527 and we plan to conduct daytime observations in future experiments. Nevertheless, our
528 study can provide reasonable and scientific suggestions for industrial layout and air
529 pollution emissions reduction measures for the NCP region, which will be of great
530 importance for achieving the integrated development goals.

531 532 Acknowledgments

533 This work was supported by the CAS Strategic Priority Research Program (Grant
534 no.XDB05020000), the National Natural Science Foundation of China (Grant
535 no.41230642) and the National Earth System Science Data Sharing Infrastructure,

536 National Science & Technology Infrastructure of China

537

538 **References**

539

540 Beyrich, F.: Mixing height estimation from SODAR data – a critical discussion, Atmos. Environ., 31, 3941–3953, 1997.

541 Chen, W., Kuze, H., Uchiyama, A., Suzuki, Y., and Takeuchi, N.: One-year observation of urban mixed layer characteristics at Tsukuba, Japan using a micro pulse lidar, Atmos. Environ., 35, 4273–4280, doi:10.1016/S1352-2310(01)00181-9, 2001.

542 Emeis, S., C. Münkel, S. Vogt, W. J. Müller, and K. Schäfer: Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements, Atmos. Environ., 38(2), 273-286, doi:10.1016/j.atmosenv.2003.09.054, 2004.

543 Emeis, S., K. Schäfer, and C. Münkel: Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data, Meteorologische Zeitschrift, 18(2), 149-154, doi:10.1127/0941-2948/2009/0365, 2009.

544 Emeis, S., K. Schäfer, C. Münkel, R. Friedl, and P. Suppan: Evaluation of the Interpretation of Ceilometer Data with RASS and Radiosonde Data, Bound.-Lay. Meteorol., 143(1), 25-35, doi:10.1007/s10546-011-9604-6, 2011.

545 Eresmaa, N., Karppinen, A., Joffre, S. M., Räsänen, J., and Talvitie, H.: Mixing height determination by ceilometer, Atmos. Chem. Phys., 6, 1485–1493, doi: 10.5194/acp-6-1485-2006, 2006.

546 Fu, G., W. Xu, R. Yang, J. Li, and C. Zhao: The distribution and trends of fog and haze in the North China Plain over the past 30 years, Atmos. Chem. Phys., 14 (21), 11949-11958, 2014.

547 Guo, J., Y. Miao, Y. Zhang, H. Liu, Z. Li, W. Zhang, J. He, M. Lou, Y. Yan, L. Bian, and P. Zhai: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data, Atmos. Chem. Phys., 16(20), 13309-13319, doi:10.5194/acp-16-13309-2016, 2016.

548 Guo, J.P., X.Y. Zhang, Y.R. Wu, H.Z. Che, Laba, and X. Li: Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980-2008, Atmos. Environ., 45(37), 6802-6811, doi: 10.1016/j.atmosenv.2011.03.068, 2011.

549 He, Q. and Mao, J.: Observation of urban mixed layer at Beijing using a micro pulse lidar, Acta Meteorol. Sin., 63, 374–384, 2005.

550 Hu, X., Ma, Z., Lin, W., Zhang, H., Hu, J., Wang, Y., Xu, X., Fuentes, J. D. and Xue, M.: Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain?: A case study, Sci. Total Environ., 499, 228–237, doi:10.1016/j.scitotenv.2014.08.053, 2014.

551 Hu, B., Wang, Y. S., and Liu, G. R.: Relationship between net radiation and broadband solar radiation in the Tibetan Plateau, Adv. Atmos. Sci., 29, 135-143, doi: 10.1007/s00376-011-0221-6, 2012.

552 Huang, Q.-Q., X.-H. Cai, Y. Song, and L. Kang: A Numerical Study of Sea Breeze

580 and Spatiotemporal Variation in the Coastal Atmospheric Boundary Layer at
581 Hainan Island, China, *Bound.-Lay. Meteorol.*, 161(3), 543-560,
582 doi:10.1007/s10546-016-0177-2, 2016.

583 Ji, D., Y. Wang, L. Wang, L. Chen, B. Hu, G. Tang, J. Xin, T. Song, T. Wen, Y. Sun, Y.
584 Pan, Z. Liu: Analysis of heavy pollution episodes in selected cities of northern
585 China, *Atmos. Environ.*, 50(2012), 338-348, 2012.

586 Li M., G. Tang, J. Huang, Z. Liu, J. An, and Y. Wang: Relationship between
587 atmospheric MLH and winter haze pollution in the Jing-Jin-Ji region, *Environ.*
588 *Sci.*, 2015,(06):1935-1943, 2015.

589 Li, P., J. Xin, X. Bai, Y. Wang, S. Wang, S. Liu, and X. Feng: Observational studies
590 and a statistical early warning of surface ozone pollution in Tangshan, the largest
591 heavy industry city of North China, *Inter. J. Env. Res. Pub. Heal.*, 10(3),
592 1048-1061, doi:10.3390/ijerph10031048, 2013.

593 Liu, Z., B. Hu, J. Zhang, Y. Yu, and Y. Wang: Characteristics of aerosol size
594 distributions and chemical compositions during wintertime pollution episodes in
595 Beijing, *Atmos. Res.*, 168, 1-12, doi:10.1016/j.atmosres.2015.08.013, 2016.

596 Miao, Y., X.-M. Hu, S. Liu, T. Qian, M. Xue, Y. Zheng, and S. Wang: Seasonal
597 variation of local atmospheric circulations and boundary layer structure in the
598 Beijing-Tianjin-Hebei region and implications for air quality, *J. Adv. Model.*
599 *Earth. Sy.*, 7(4), 1602-1626, doi:10.1002/2015ms000522, 2015.

600 Münkel, C., and J. Räsänen: New optical concept for commercial lidar ceilometers
601 scanning the boundary layer, *P.SPIE*, 5571, 364-374, 2004.

602 Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen: Retrieval of mixing height
603 and dust concentration with lidar ceilometer, *Bound.-Lay. Meteorol.*, 124(1),
604 117-128, doi:10.1007/s10546-006-9103-3, 2006.

605 Muñoz, R. C., and A. A. Undurraga: Daytime Mixing layer over the Santiago Basin:
606 Description of Two Years of Observations with a Lidar Ceilometer, *J. Appl.*
607 *Meteorol. Clim.*, 49(8), 1728-1741, doi:10.1175/2010jamc2347.1, 2010.

608 Puygrenier, V., F. Lohou, B. Campistron, F. Saïd, G. Pigeon, B. Bénech, and D. Serça:
609 Investigation on the fine structure of sea-breeze during ESCOMPTE experiment,
610 *Atmos. Res.*, 74(1-4), 329-353,
611 doi:<http://dx.doi.org/10.1016/j.atmosres.2004.06.011>, 2005.

612 Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P., and Zhao,
613 D.: Evolution of planetary boundary layer under different weather conditions,
614 and its impact on aerosol concentrations, *Particuology*, 11, 34-40,
615 doi:10.1016/j.partic.2012.04.005, 2013.

616 Schween, J. H., A. Hirsikko, U. Löhnert, and S. Crewell: Mixing-layer height retrieval
617 with ceilometer and Doppler lidar: from case studies to long-term assessment,
618 *Atmos. Meas. Tech.*, 7(11), 3685-3704, doi:10.5194/amt-7-3685-2014, 2014.

619 Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier: Review
620 and intercomparison of operational methods for the determination of the mixing
621 height, *Atmos. Environ.*, 34(7), 1001-1027,
622 doi:[http://dx.doi.org/10.1016/S1352-2310\(99\)00349-0](http://dx.doi.org/10.1016/S1352-2310(99)00349-0), 2000.

623 Seidel, D. J., C. O. Ao, and K. Li: Estimating climatological planetary boundary layer

624 heights from radiosonde observations: Comparison of methods and uncertainty
625 analysis, *J. Geophys. Res.*, 115, D16113, doi:10.1029/2009JD013680, 2010.

626 Sokół, P., I. Stachlewska, I. Ungureanu, and S. Stefan: Evaluation of the boundary
627 layer morning transition using the CL-31 ceilometer signals, *Acta Geophys.*,
628 62(2), doi:10.2478/s11600-013-0158-5, 2014.

629 Stull, R.B.: *An Introduction to Boundary Layer Meteorology*, Kluwer Academic
630 Publishers, Dordrecht, 1988.

631 Tang, G., J. Zhang, X. Zhu, T. Song, C. Münkel, B. Hu, K. Schäfer, Z. Liu, J. Zhang,
632 L. Wang, J. Xin, P. Suppan, and Y. Wang: Mixing layer height and its
633 implications for air pollution over Beijing, China, *Atmos. Chem. Phys.*, 16(4),
634 2459-2475, doi:10.5194/acp-16-2459-2016, 2016.

635 Tang, G., P. Zhao, Y. Wang, W. Gao, M. Cheng, J. Xin, X. Li, Y. Wang: Mortality and
636 air pollution in Beijing: the long-term relationship. *Atmos. Environ.*, 150,
637 238-243, doi: 10.1016/j.atmosenv.2016.11.045, 2017a.

638 Tang, G., X. Li, Y. Wang, J. Xin, and X. Ren: Surface ozone trend details and
639 interpretations in Beijing, 2001–2006, *Atmos. Chem. Phys.*, 9, 8813-8823,
640 doi:10.5194/acp-9-8813-2009, 2009.

641 Tang, G., X. Zhu, B. Hu, J. Xin, L. Wang, C. Münkel, G. Mao, and Y. Wang: Impact
642 of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer
643 observations, *Atmos. Chem. Phys.*, 15(21), 12667-12680,
644 doi:10.5194/acp-15-12667-2015, 2015.

645 Tang, G., X. Zhu, J. Xin, B. Hu, T. Song, Y. Sun, J. Zhang, L. Wang, M. Cheng, N.
646 Chao, L. Kong, X. Li, Y. Wang. Modelling study of boundary-layer ozone over
647 northern China - Part I: Ozone budget in summer. *Atmos. Res.*, 187, 128-137,
648 2017b.

649 Tang, G., Y. Wang, X. Li, D. Ji, S. Hsu, and X. Gao: Spatial-temporal variations in
650 surface ozone in Northern China as observed during 2009–2010 and possible
651 implications for future air quality control strategies, *Atmos. Chem. Phys.*, 12,
652 2757-2776, doi:10.5194/acp-12-2757-2012, 2012.

653 Tomasi, F. D., M. M. Miglietta, M. R. Perrone: The Growth of the Planetary
654 Boundary Layer at a Coastal Site: a Case Study, *Bound.-Lay. Meteorol.*,
655 139:521-541, doi: 10.1007/s10546-011-9592-6, 2011.

656 Tu J., S. Zhang, X. Cheng, W. Yang, Y. Yang: Temporal and Spatial Variation of
657 Atmospheric Boundary Layer Height(ABLH) over the Yellow East China Sea, *J.*
658 *Ocean U. China*, 42(4):7-18, 2012.

659 van der Kamp, D., and I. McKendry: Diurnal and Seasonal Trends in Convective
660 Mixed-Layer Heights Estimated from Two Years of Continuous Ceilometer
661 Observations in Vancouver, BC, *Bound.-Lay. Meteorol.*, 137(3), 459-475,
662 doi:10.1007/s10546-010-9535-7, 2010.

663 Vijayakumar S. Nair, K. K. Moorthy, D. P. Alappattu, P. K. Kunhikrishnan, S. George,
664 P. R. Nair, S. S. Babu, B. Abish, S. K. Satheesh, S. N. Tripathi, K. Niranjan, B. L.
665 Madhavan, V. Srikant, C. B. S. Dutt, K. V. S. Badarinath, and R. R. Reddy:
666 Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts
667 of local boundary layer processes and long-rang transport, *J. Geo. Res.*:

668 2006JD008099, doi:10.1029/2006JD008099, 2007.

669 670 671 Wagner, P., K. Schäfer: Influence of mixing layer height on air pollutant
concentrations in an urban street canyon, *Urban Climate*,
<http://dx.doi.org/10.1016/j.uclim.2015.11.001>, 2015.

672 673 674 675 Wang, L., N. Zhang, Z. Liu, Y. Sun, D. Ji, and Y. Wang: The Influence of Climate
Factors, Meteorological Conditions, and Boundary-Layer Structure on Severe
Haze Pollution in the Beijing-Tianjin-Hebei Region during January 2013, *Adv.
Meteorol.*, 2014, 1-14, doi:10.1155/2014/685971, 2014.

676 677 678 679 Wang, Y., L. Yao, L. Wang, Z. Liu, D. Ji, G. Tang, J. Zhang, Y. Sun, B. Hu, and J. Xin:
Mechanism for the formation of the January 2013 heavy haze pollution episode
over central and eastern China, *Sci. China Earth Sci.*, 57(1), 14-25,
doi:10.1007/s11430-013-4773-4, 2013.

680 681 682 683 Wiegnerm, M., F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G.
Pappalardo, K. Schäfer, and W. Thomas: What is the benefit of ceilometers for
aerosol remote sensing? An answer from ERLINET, *Atmos. Meas. Tech.*, 7,
1979-1997, doi: 10.5194/amt-7-1979-2014, 2014.

684 685 686 687 688 Xin, J., Y. Wang, Y. Pan, D. Ji, Z. Liu, T. Wen, Y. Wang, X. Li, Y. Sun, J. Sun, P. Wang,
C. Wang, X. Wang, Z. Cong, T. Song, B. Hu, L. Wang, G. Tang, W. Gao, Y. Guo,
H. Miao, S. Tian, and L. Wang: The Campaign on Atmospheric Aerosol Research
Network of China: CARE-China, *Bull. Amer. Meteor. Soc.*, 96(7), 1137-1155,
doi:10.1175/bams-d-14-00039.1, 2015.

689 690 691 692 Xu, R., G. Tang, Y. Wang, and X. Tie: Analysis of a long-term measurement of air
pollutants (2007-2011) in North China Plain (NCP); Impact of emission
reduction during the Beijing Olympic Games, *Chemosphere*, 159, 647-658,
doi:10.1016/j.chemosphere.2016.06.025, 2016.

693 694 695 Yu-Kyung, H., K.-E. Kim, and K.-J. Ha: A comparison of methods to estimate the
height of stable boundary layer over a temperate grassland, *Agr. Forest Meteorol.*:
132(2005) 132-142, 2005.

696 697 698 699 Zhang Z., X. Cai, Y. Song, L. Kang, X. Huang, Q. Li: Temporal and spatial variation
of atmospheric boundary layer height over Hainan Island and its adjacent sea
areas, *Acta. Sci. Nat. Univ. Pekin.*, 49:83-90, doi:
10.13209/j.0479-8023.2013.105, 2013.

700 701 702 Zhang, H., Y. Wang, J. Hu, Q. Ying, and X.-M. Hu: Relationships between
meteorological parameters and criteria air pollutants in three megacities in China,
Environ. Res., 140, 242–254, doi:10.1016/j.envres.2015.04.004, 2015.

703 704 705 706 Zhang, J. K., Y. Sun, Z. R. Liu, D. S. Ji, B. Hu, Q. Liu, and Y. S. Wang:
Characterization of submicron aerosols during a month of serious pollution in
Beijing, 2013, *Atmos. Chem. Phys.*, 14(6), 2887-2903,
doi:10.5194/acp-14-2887-2014, 2014.

707 708 709 Zhang, W., J. Guo, Y. Miao, H. Liu, Y. Zhang, Z. Li, and P. Zhai: Planetary boundary
layer height from CALIOP compared to radiosonde over China, *Atmos. Chem.
Phys.*, 16, 9951–9963, doi: 10.5194/acp-16-9951-2016, 2016.

710 711 Zhao, X., P. Zhao, J. Xu, W. Meng, W. Pu, F. Dong, D. He, and Q. Shi: Analysis of a
winter regional haze event and its formation mechanism in the North China Plain,

Atmos. Chem. Phys., 13 (11), 5685-5696, 2013.
Zhu, X., G. Tang, B. Hu, L. Wang, J. Xin, J. Zhang, Z. Liu, C. Münkel, and Y. Wang:
Regional pollution and its formation mechanism over North China Plain: A case
study with ceilometer observations and model simulations, J. Geo. Res.: Atmos.,
2016JD025730, doi:10.1002/2016JD025730, 2016.